10 research outputs found

    Distributed Control of a Swarm of Autonomous Unmanned Aerial Vehicles

    Get PDF
    With the increasing use of Unmanned Aerial Vehicles (UAV)s military operations, there is a growing need to develop new methods of control and navigation for these vehicles. This investigation proposes the use of an adaptive swarming algorithm that utilizes local state information to influence the overall behavior of each individual agent in the swarm based upon the agent\u27s current position in the battlespace. In order to investigate the ability of this algorithm to control UAVs in a cooperative manner, a swarm architecture is developed that allows for on-line modification of basic rules. Adaptation is achieved by using a set of behavior coefficients that define the weight at which each of four basic rules is asserted in an individual based upon local state information. An Evolutionary Strategy (ES) is employed to create initial metrics of behavior coefficients. Using this technique, three distinct emergent swarm behaviors are evolved, and each behavior is investigated in terms of the ability of the adaptive swarming algorithm to achieve the desired emergent behavior by modifying the simple rules of each agent. Finally, each of the three behaviors is analyzed visually using a graphical representation of the simulation, and numerically, using a set of metrics developed for this investigation

    Novel method for combined linkage and genome-wide association analysis finds evidence of distinct genetic architecture for two subtypes of autism

    Get PDF
    The Autism Genome Project has assembled two large datasets originally designed for linkage analysis and genome-wide association analysis, respectively: 1,069 multiplex families genotyped on the Affymetrix 10 K platform, and 1,129 autism trios genotyped on the Illumina 1 M platform. We set out to exploit this unique pair of resources by analyzing the combined data with a novel statistical method, based on the PPL statistical framework, simultaneously searching for linkage and association to loci involved in autism spectrum disorders (ASD). Our analysis also allowed for potential differences in genetic architecture for ASD in the presence or absence of lower IQ, an important clinical indicator of ASD subtypes. We found strong evidence of multiple linked loci; however, association evidence implicating specific genes was low even under the linkage peaks. Distinct loci were found in the lower IQ families, and these families showed stronger and more numerous linkage peaks, while the normal IQ group yielded the strongest association evidence. It appears that presence/absence of lower IQ (LIQ) demarcates more genetically homogeneous subgroups of ASD patients, with not just different sets of loci acting in the two groups, but possibly distinct genetic architecture between them, such that the LIQ group involves more major gene effects (amenable to linkage mapping), while the normal IQ group potentially involves more common alleles with lower penetrances. The possibility of distinct genetic architecture across subtypes of ASD has implications for further research and perhaps for research approaches to other complex disorders as well

    Tracking Subpixel Targets with Critically Sampled Optical Sensors

    Get PDF
    In many remote sensing applications, the area of a scene sensed by a single pixel can often be measured in square meters. This means that many objects of interest in a scene are smaller than a single pixel in the resulting image. Current tracking methods rely on robust object detection using multi-pixel features. A subpixel object does not provide enough information for these methods to work. This dissertation presents a method for tracking subpixel objects in image sequences captured from a stationary sensor that is critically sampled spatially. Using template matching, we estimate the maximum a posteriori probability of the target state over a sequence of images. A distance transform is used to calculate the motion prior in linear time, dramatically decreasing computation requirements. We compare the results of this method to a previously state-of-the-art track-before-detect particle filter designed for tracking small, low contrast objects using both synthetic and real-world imagery. Results show our method produces more accurate state estimates and higher detection rates than the current state of the art methods at signal-to-noise ratios as low as 3dB.http://archive.org/details/trackingsubpixel1094517407Major, United States Air ForceApproved for public release; distribution is unlimited

    Standardized Color in the Food Industry: The Co-Creation of the Food Coloring Business in the United States, 1870-1940

    No full text

    A genome-wide scan for common alleles affecting risk for autism.

    No full text

    Individual common variants exert weak effects on the risk for autism spectrum disorders

    Get PDF
    While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASDs), the contribution of common variation to the risk of developing ASD is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating the association of individual single nucleotide polymorphisms (SNPs), we also sought evidence that common variants, en masse, might affect the risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest P-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. In contrast, allele scores derived from the transmission of common alleles to Stage 1 cases significantly predict case status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele score results, it is reasonable to conclude that common variants affect the risk for ASD but their individual effects are modest

    Functional impact of global rare copy number variation in autism spectrum disorders.

    Get PDF
    International audienceThe autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways
    corecore